CPU怎么做
從沙子到CPU制作全過程現(xiàn)在市場(chǎng)上產(chǎn)品豐富,,琳瑯滿目,,當(dāng)你使用著配置了最新款CPU的電腦在互聯(lián)網(wǎng)上縱橫馳騁,,在各種程序應(yīng)用之間操作自如的時(shí)候,,有沒有興趣去想一想這個(gè)頭不大,、功能不小的CPU是怎么制作出來的呢,。在今天的半導(dǎo)體制造業(yè)中,,計(jì)算機(jī)中央處理器無疑是受關(guān)注程度最高的領(lǐng)域,,而這個(gè)領(lǐng)域中眾所周知的兩大巨頭,,其所遵循的處理器架構(gòu)均為x86,,而另外一家號(hào)稱信息產(chǎn)業(yè)的藍(lán)色巨人的IBM,也擁有強(qiáng)大的處理器設(shè)計(jì)與制造能力,,它們最先發(fā)明了應(yīng)變硅技術(shù),,并在90納米的處理器制造工藝上走在最前列,。在今天的文章中,我們將一步一步的為您講述中央處理器從一堆沙子到一個(gè)功能強(qiáng)大的集成電路芯片的全過程,。制造CPU的基本原料如果問及CPU的原料是什么,,大家都會(huì)輕而易舉的給出答案—是硅。這是不假,,但硅又來自哪里呢,?其實(shí)就是那些最不起眼的沙子。難以想象吧,,價(jià)格昂貴,,結(jié)構(gòu)復(fù)雜,功能強(qiáng)大,,充滿著神秘感的CPU竟然來自那根本一文不值的沙子,。當(dāng)然這中間必然要經(jīng)歷一個(gè)復(fù)雜的制造過程才行。不過不是隨便抓一把沙子就可以做原料的,,一定要精挑細(xì)選,,從中提取出最最純凈的硅原料才行。試想一下,,如果用那最最廉價(jià)而又儲(chǔ)量充足的原料做成CPU,,那么成品的質(zhì)量會(huì)怎樣,你還能用上像現(xiàn)在這樣高性能的處理器嗎,?除去硅之外,,制造CPU還需要一種重要的材料就是金屬。目前為止,,鋁已經(jīng)成為制作處理器內(nèi)部配件的主要金屬材料,,而銅則逐漸被淘汰,這是有一些原因的,,在目前的CPU工作電壓下,,鋁的電遷移特性要明顯好于銅。所謂電遷移問題,,就是指當(dāng)大量電子流過一段導(dǎo)體時(shí),,導(dǎo)體物質(zhì)原子受電子撞擊而離開原有位置,留下空位,,空位過多則會(huì)導(dǎo)致導(dǎo)體連線斷開,,而離開原位的原子停留在其它位置,會(huì)造成其它地方的短路從而影響芯片的邏輯功能,,進(jìn)而導(dǎo)致芯片無法使用,。這就是許多Northwood Pentium 4換上SNDS(北木暴畢綜合癥)的原因,當(dāng)發(fā)燒友們第一次給Northwood Pentium 4超頻就急于求成,大幅提高芯片電壓時(shí),,嚴(yán)重的電遷移問題導(dǎo)致了CPU的癱瘓,。這就是intel首次嘗試銅互連技術(shù)的經(jīng)歷,它顯然需要一些改進(jìn),。不過另一方面講,,應(yīng)用銅互連技術(shù)可以減小芯片面積,同時(shí)由于銅導(dǎo)體的電阻更低,,其上電流通過的速度也更快,。除了這兩樣主要的材料之外,在芯片的設(shè)計(jì)過程中還需要一些種類的化學(xué)原料,,它們起著不同的作用,,這里不再贅述。CPU制造的準(zhǔn)備階段在必備原材料的采集工作完畢之后,,這些原材料中的一部分需要進(jìn)行一些預(yù)處理工作,。而作為最主要的原料,硅的處理工作至關(guān)重要,。首先,,硅原料要進(jìn)行化學(xué)提純,這一步驟使其達(dá)到可供半導(dǎo)體工業(yè)使用的原料級(jí)別,。而為了使這些硅原料能夠滿足集成電路制造的加工需要,,還必須將其整形,這一步是通過溶化硅原料,,然后將液態(tài)硅注入大型高溫石英容器而完成的,。而后,將原料進(jìn)行高溫溶化,。中學(xué)化學(xué)課上我們學(xué)到過,,許多固體內(nèi)部原子是晶體結(jié)構(gòu),硅也是如此,。為了達(dá)到高性能處理器的要求,,整塊硅原料必須高度純凈,及單晶硅,。然后從高溫容器中采用旋轉(zhuǎn)拉伸的方式將硅原料取出,,此時(shí)一個(gè)圓柱體的硅錠就產(chǎn)生了。從目前所使用的工藝來看,,硅錠圓形橫截面的直徑為200毫米,。不過現(xiàn)在intel和其它一些公司已經(jīng)開始使用300毫米直徑的硅錠了。在保留硅錠的各種特性不變的情況下增加橫截面的面積是具有相當(dāng)?shù)碾y度的,,不過只要企業(yè)肯投入大批資金來研究,,還是可以實(shí)現(xiàn)的,。intel為研制和生產(chǎn)300毫米硅錠而建立的工廠耗費(fèi)了大約35億美元,,新技術(shù)的成功使得intel可以制造復(fù)雜程度更高,,功能更強(qiáng)大的集成電路芯片。而200毫米硅錠的工廠也耗費(fèi)了15億美元,。下面就從硅錠的切片開始介紹CPU的制造過程,。單晶硅錠在制成硅錠并確保其是一個(gè)絕對(duì)的圓柱體之后,下一個(gè)步驟就是將這個(gè)圓柱體硅錠切片,,切片越薄,,用料越省,自然可以生產(chǎn)的處理器芯片就更多,。切片還要鏡面精加工的處理來確保表面絕對(duì)光滑,,之后檢查是否有扭曲或其它問題。這一步的質(zhì)量檢驗(yàn)尤為重要,,它直接決定了成品CPU的質(zhì)量,。新的切片中要摻入一些物質(zhì)而使之成為真正的半導(dǎo)體材料,而后在其上刻劃代表著各種邏輯功能的晶體管電路,。摻入的物質(zhì)原子進(jìn)入硅原子之間的空隙,,彼此之間發(fā)生原子力的作用,從而使得硅原料具有半導(dǎo)體的特性,。今天的半導(dǎo)體制造多選擇CMOS工藝(互補(bǔ)型金屬氧化物半導(dǎo)體),。其中互補(bǔ)一詞表示半導(dǎo)體中N型MOS管和P型MOS管之間的交互作用。而N和P在電子工藝中分別代表負(fù)極和正極,。多數(shù)情況下,,切片被摻入化學(xué)物質(zhì)而形成P型襯底,在其上刻劃的邏輯電路要遵循nMOS電路的特性來設(shè)計(jì),,這種類型的晶體管空間利用率更高也更加節(jié)能,。同時(shí)在多數(shù)情況下,必須盡量限制pMOS型晶體管的出現(xiàn),,因?yàn)樵谥圃爝^程的后期,,需要將N型材料植入P型襯底當(dāng)中,而這一過程會(huì)導(dǎo)致pMOS管的形成,。在摻入化學(xué)物質(zhì)的工作完成之后,,標(biāo)準(zhǔn)的切片就完成了。然后將每一個(gè)切片放入高溫爐中加熱,,通過控制加溫時(shí)間而使得切片表面生成一層二氧化硅膜,。通過密切監(jiān)測(cè)溫度,空氣成分和加溫時(shí)間,,該二氧化硅層的厚度是可以控制的,。在intel的90納米制造工藝中,,門氧化物的寬度小到了驚人的 5個(gè)原子厚度。這一層門電路也是晶體管門電路的一部分,,晶體管門電路的作用是控制其間電子的流動(dòng),,通過對(duì)門電壓的控制,電子的流動(dòng)被嚴(yán)格控制,,而不論輸入輸出端口電壓的大小,。準(zhǔn)備工作的最后一道工序是在二氧化硅層上覆蓋一個(gè)感光層。這一層物質(zhì)用于同一層中的其它控制應(yīng)用,。這層物質(zhì)在干燥時(shí)具有很好的感光效果,,而且在光刻蝕過程結(jié)束之后,能夠通過化學(xué)方法將其溶解并除去,。光刻蝕這是目前的CPU制造過程當(dāng)中工藝非常復(fù)雜的一個(gè)步驟,,為什么這么說呢?光刻蝕過程就是使用一定波長的光在感光層中刻出相應(yīng)的刻痕,,由此改變?cè)撎幉牧系幕瘜W(xué)特性,。這項(xiàng)技術(shù)對(duì)于所用光的波長要求極為嚴(yán)格,需要使用短波長的紫外線和大曲率的透鏡,??涛g過程還會(huì)受到晶圓上的污點(diǎn)的影響。每一步刻蝕都是一個(gè)復(fù)雜而精細(xì)的過程,。設(shè)計(jì)每一步過程的所需要的數(shù)據(jù)量都可以用10GB的單位來計(jì)量,,而且制造每塊處理器所需要的刻蝕步驟都超過20步(每一步進(jìn)行一層刻蝕)。而且每一層刻蝕的圖紙如果放大許多倍的話,,可以和整個(gè)紐約市外加郊區(qū)范圍的地圖相比,,甚至還要復(fù)雜,試想一下,,把整個(gè)紐約地圖縮小到實(shí)際面積大小只有 100個(gè)平方毫米的芯片上,,那么這個(gè)芯片的結(jié)構(gòu)有多么復(fù)雜,可想而知了吧,。當(dāng)這些刻蝕工作全部完成之后,,晶圓被翻轉(zhuǎn)過來。短波長光線透過石英模板上鏤空的刻痕照射到晶圓的感光層上,,然后撤掉光線和模板,。通過化學(xué)方法除去暴露在外邊的感光層物質(zhì),而二氧化硅馬上在陋空位置的下方生成,。摻雜在殘留的感光層物質(zhì)被去除之后,,剩下的就是充滿的溝壑的二氧化硅層以及暴露出來的在該層下方的硅層。這一步之后,,另一個(gè)二氧化硅層制作完成,。然后,,加入另一個(gè)帶有感光層的多晶硅層。多晶硅是門電路的另一種類型,。由于此處使用到了金屬原料(因此稱作金屬氧化物半導(dǎo)體),,多晶硅允許在晶體管隊(duì)列端口電壓起作用之前建立門電路。感光層同時(shí)還要被短波長光線透過掩??涛g,。再經(jīng)過一部刻蝕,所需的全部門電路就已經(jīng)基本成型了,。然后,要對(duì)暴露在外的硅層通過化學(xué)方式進(jìn)行離子轟擊,,此處的目的是生成N溝道或P溝道,。這個(gè)摻雜過程創(chuàng)建了全部的晶體管及彼此間的電路連接,沒個(gè)晶體管都有輸入端和輸出端,,兩端之間被稱作端口,。重復(fù)這一過程從這一步起,你將持續(xù)添加層級(jí),,加入一個(gè)二氧化硅層,,然后光刻一次。重復(fù)這些步驟,,然后就出現(xiàn)了一個(gè)多層立體架構(gòu),,這就是你目前使用的處理器的萌芽狀態(tài)了。在每層之間采用金屬涂膜的技術(shù)進(jìn)行層間的導(dǎo)電連接,。今天的P4處理器采用了7層金屬連接,,而 Athlon64使用了9層,所使用的層數(shù)取決于最初的版圖設(shè)計(jì),,并不直接代表著最終產(chǎn)品的性能差異,。接下來的幾個(gè)星期就需要對(duì)晶圓進(jìn)行一關(guān)接一關(guān)的測(cè)試,包括檢測(cè)晶圓的電學(xué)特性,,看是否有邏輯錯(cuò)誤,,如果有,是在哪一層出現(xiàn)的等等,。而后,,晶圓上每一個(gè)出現(xiàn)問題的芯片單元將被單獨(dú)測(cè)試來確定該芯片有否特殊加工需要。而后,,整片的晶圓被切割成一個(gè)個(gè)獨(dú)立的處理器芯片單元,。在最初測(cè)試中,那些檢測(cè)不合格的單元將被遺棄,。這些被切割下來的芯片單元將被采用某種方式進(jìn)行封裝,,這樣它就可以順利的插入某種接口規(guī)格的主板了,。大多數(shù)intel和AMD的處理器都會(huì)被覆蓋一個(gè)散熱層。在處理器成品完成之后,,還要進(jìn)行全方位的芯片功能檢測(cè),。這一部會(huì)產(chǎn)生不同等級(jí)的產(chǎn)品,一些芯片的運(yùn)行頻率相對(duì)較高,,于是打上高頻率產(chǎn)品的名稱和編號(hào),,而那些運(yùn)行頻率相對(duì)較低的芯片則加以改造,打上其它的低頻率型號(hào),。這就是不同市場(chǎng)定位的處理器,。而還有一些處理器可能在芯片功能上有一些不足之處。比如它在緩存功能上有缺陷(這種缺陷足以導(dǎo)致絕大多數(shù)的 CPU癱瘓),,那么它們就會(huì)被屏蔽掉一些緩存容量,,降低了性能,當(dāng)然也就降低了產(chǎn)品的售價(jià),,這就是Celeron和Sempron的由來,。在CPU的包裝過程完成之后,許多產(chǎn)品還要再進(jìn)行一次測(cè)試來確保先前的制作過程無一疏漏,,且產(chǎn)品完全遵照規(guī)格所述,,沒有偏差
首先是設(shè)計(jì),這個(gè)需要相當(dāng)?shù)碾娮与娐分R(shí),,從半導(dǎo)體到一般的與非門再到集成電路,。
然后,用5個(gè)步驟(簡(jiǎn)化的)就可以了
第一步:制作光刻掩膜版
將這設(shè)計(jì)的包含了CPU功能模塊,、電路系統(tǒng)等物理結(jié)構(gòu)的“地圖”繪制在“印刷母板上,。
第二步:晶圓覆膜準(zhǔn)備
將準(zhǔn)備好的晶圓扔進(jìn)光刻機(jī)之前,一般通過高溫加熱方式使其表面產(chǎn)生氧化膜,,如使用二氧化硅(覆化)作為光導(dǎo)纖維,,便于后續(xù)的光刻流程
第三步:在晶圓上“光刻”電路流程
使用阿斯麥的“大殺器”,將紫外(或極紫外)光通過蔡司的鏡片,,照在前面準(zhǔn)備好的集成電路掩膜版上,,將設(shè)計(jì)師繪制好的“電路圖”曝光(光刻)在晶圓上。
第四步:晶圓切割使用光刻機(jī)燒制完畢的晶圓,,包含多個(gè)芯片,,通過一系列檢測(cè)之后,將健康的個(gè)體們切割出來.第五步:芯片封裝將切割后的芯片焊(粘)接在對(duì)應(yīng)的基座上.